Name:	 	
Block:	 	

Atomic Structure Worksheet

The 3 particles of the atom are	:	
a		
b		
c	_	
Their respective charges are:		
a		
b		
c	-	
The number of protons in one a	atom of an element determines the ato	om's
, 8	and the number of electrons determined	nes
01	f and element.	
The atomic number tells you the	ne number of	in one atom of an
element. It also tells you the n	umber of	_ in a neutral atom of that
element. The atomic number g	ives the "identity " of an element as y	well as its location on the
Periodic Table. No two differe	ent elements will have the	atomic
number.		
The	of an element is the average mass	of an element's naturally
occurring atom, or isotopes, ta	king into account the	of each
isotope.	-	
The	of an element is the total number	of protons and neutrons in
the	of the atom.	-
The mass number is used to ca	lculate the number of	in one atom
of an element. In order to calc	ulate the number of neutrons you mu	ist subtract the
	from the	

	Lith	ium	Bromine
	Iron		Copper
	Oxy	gen	Mercury
	Kry	pton	Helium
	Give	e the symbol and number of elec	trons in a neutral atom of:
	Urai	nium	Chlorine
	Bore	on	Iodine
	Anti	mony	Xenin
	C !		
	Give	e the symbol and number of neut	trons in one atom of:
	(10	get "mass number", you must ro	bund the "atomic mass" to the nearest whole number
	Sho	w your calculations.	
	Bari	um	Bismuth
	Carl	00n	Hydrogen
	Fluc	orine	Magnesium
	Euro	opium	Mercury
•	Nan	ie the element which has the fol	lowing numbers of particles:
	a.	26 electrons, 29 neutrons, 26	5 protons
	b.	53 protons, 74 neutrons	
	c.	2 electrons (neutral atoms)	
	d.	20 protons	
	e.	86 electrons, 125 neutrons, 8	32 protons (charged atom)
	f.	0 neutrons	
•	If yo	ou know only the following infor	mation can you always determine what the element
	(Yes	:/No).	
	a.	number of protons	
	a. b.	number of protons number of neutrons	

d.

number of electrons_____

CHEMISTRY

X = element symbol A = mass number [# of protons (p) + # neutrons (n)] Z = atomic number [# of protons] N = # of neutrons A - Z = N

A typical isotopic symbol takes this form:

 $^{A}_{Z}X$

 ${}^{19}_{9}F$

ex. The isotopic symbol for Fluorine would be

Fill in the missing items in the table below.

Name	Symbol	Z	А	#p	#e	#n	Isotopic Symbol
	Na						
		17					
Potassium							

Fill in the missing items in the table below.

Name	Symbol	Z	А	#p	#e	#n	Isotopic Symbol
	Р						
Iron							
				53			

Fill in the missing items in the table below.

Name	Symbol	Z	А	#p	#e	#n	Isotopic Symbol
Silver							
		36					
	W						

ATOMIC WEIGHTS

Look at the atomic weights of a few different elements on your periodic table. Do you notice that very few of the elements have atomic weights that are close to being nice whole numbers?

Do you know why this is? After all, for our purposes, the mass of both the proton and the neutron are almost exactly 1, and in chemistry we usually ignore the mass of the electron because it is so very small.

Why then, if the mass of the atom comes mainly from the protons and neutrons it contains, don't the atomic weights of the all come out to be nice whole numbers?

The reason is this; the atomic weights given on your tables are "weighted averages" of the weights of the different naturally occurring isotopes of the element. Let's look at an example.

Approximately 75% of the chlorine atoms found in nature have a mass of 35. The other 25% have a mass of 37. What should we report as the atomic weight for chlorine?

What we do is to take the "weighted average" of these isotopes. We multiply 75% times 35 and then add that to 25% times 37...

[(.75)(35)] + [(.25)(37)]= 26.25 + 9.25

= 35.5

In cases where there are three known isotopes you would simply multiply each mass number by the % (expressed as a decimal) of the atoms with that mass and then add the products together.

STUDENT PRACTICE

NOTE: The numbers in each of the following problems have been made up. If we used actual percentages and masses of isotopes then you could simply look up the atomic weight of the element on the periodic table.

1. Suppose that there were two isotopes of Sodium. 28% of the naturally occurring sodium atoms had a mass of 22, and 72% atoms had a mass of 23. What would the average atomic weight of sodium be?

2. Suppose that there were two natural isotopes of Copper. 80% of the atoms had a mass of 63, and 20% of the atoms had a mass of 65. What would that average atomic weight of copper be?

3. Suppose that a new element (E) were discovered that existed as three natural isotopes. 25% of the atoms had a mass of 278, 38% had a mass of 281, and the remainder had a mass of 285. What would be listed as the atomic weight of this element?